



### Motivation

- In many application areas, one encounters a function f which is difficult or expensive to evaluate, for example the output of a sophisticated computer simulation.
- One desires an approximation of f that is easier to evaluate than fitself, *i.e.*, an interpolant.
- A popular way of constructing these surrogate functions is to use positive definite kernels.
- The choice of which kernel to use has a significant effect on the accuracy of the resulting approximation.
- •So, we'd like a systematic way of choosing the most suitable kernel for the particular application.

## Introduction

•We study a 2-parameter family of **compact Matérn kernels** arising as **Green's functions** associated with differential equations of the form

$$\left(-\left(\frac{\mathrm{d}^2}{\mathrm{d}x^2}\right) + \varepsilon^2 \operatorname{Id}\right)^{\beta} K_{\beta,\varepsilon}(x,y) = \delta(x-y),$$

subject to the boundary conditions

$$K_{\beta,\varepsilon}(0,y) = K_{\beta,\varepsilon}''(0,y) = \cdots = K_{\beta,\varepsilon}^{2(\beta-1)}(0,y) = 0$$
  
$$K_{\beta,\varepsilon}(L,y) = K_{\beta,\varepsilon}''(L,y) = \cdots = K_{\beta,\varepsilon}^{2(\beta-1)}(L,y) = 0,$$

where  $\delta$  is the Dirac delta function and  $[0, L] \times [0, L]$  is the domain on which our kernel is defined.

• Current kernel methods optimize  $\varepsilon$ , the "shape" parameter.



**Figure:** Relative RMS error as  $\varepsilon$  varies, using kernels with  $\beta = 8$ . Note that there is a *nonzero* value of  $\varepsilon$  that minimizes error.

- By introducing the new parameter  $\beta$ , the number of iterations of the differential operator  $\left(-\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \varepsilon^2 \mathrm{Id}\right)$ , we can force the kernel  $K_{\beta,\varepsilon}$ to be continuously differentiable up to the  $(2\beta - 2)^{\text{th}}$  derivative. In this sense  $\beta$  is a **smoothness parameter**.
- •Closed forms of these kernels are known when  $\varepsilon = 0$ .
- •In that special case, we recover certain piecewise polynomial splines, which are well-understood and can be expressed as

$$K_{\beta,0}(x,y) = \frac{(2L)^{2\beta-1}}{(2\beta)!} \left[ B_{2\beta} \left( \frac{|x-y|}{2L} \right) - B_{2\beta} \left( \frac{x+y}{2L} \right) \right],$$

with Bernoulli polynomials  $B_{2\beta}$ .

# A 2-Parameter Family of Kernels for Data Interpolation

Casey Bylund<sup>1</sup>

<sup>1</sup>University of San Francisco <sup>2</sup>Brown University







(2)

# Closed Forms when $\varepsilon > 0$ via Green's functions

- •A Green's function is a type of function used to solve differential equations subject to boundary conditions.
- The kernels in this family are continuously differentiable up to the  $(2\beta 2)^{\text{th}}$ derivative, and have a jump of 1 in the  $(2\beta - 1)^{\text{th}}$  derivative along the line y = xdue to the Dirac delta function on the RHS of (1).
- •We split the domain  $[0, L] \times [0, L]$  along the interface x = y and find the Green's function on either side.
- •We force the two sides to agree along the interface with "gluing" conditions.
- •With the boundary conditions in equation (2) and these interface conditions, a Green's function is uniquely determined.
- The Green's function for the original boundary value problem is then given by the piecewise union of those of each half of the domain.
- This domain-splitting approach sidesteps the difficulty of the discontinuity in the  $(2\beta - 1)^{\text{th}}$  derivative.



(a)  $\varepsilon = 1$ (b)  $\varepsilon = 7$ **Figure:** Surface plot of  $K_{2,\varepsilon}$ .  $\beta = 2, \varepsilon > 0, L = 1$ . Note the interface x = y in black, and the effect of the shape parameter.

# Convergence Behavior

- •We perform numerical experiments to investigate how fast the interpolant converges to the target function as N, the number of data points, increases.
- •Here we assume that the error in the interpolant is proportional to  $N^{-p}$  (we refer to the exponent p as the order of convergence).
- If the function to be approximated satisfies the boundary conditions in (2) for all even derivatives up to order 2n, then we observe that the rate of convergence seems to be  $p = 2\beta$  and it increases with  $\beta$  until  $\beta > n + 1$ , after which the rate of convergence remains constant:





#### (a) Convergence orders

**Figure:** The target function  $f(x) = x^7(x-1)^8$  satisfies the left boundary conditions for all even derivatives up to the 6<sup>th</sup>, and those on the right for all even derivatives up to the 8<sup>th</sup>. Note how the rate of convergence increases as  $\beta$  increases until a boundary condition is violated. This occurs even if only one of the boundary conditions is not satisfied, and even when higher-order boundary conditions are satisfied.

Will Mayner<sup>2</sup>

(b) Error as N increases for different values of  $\beta$ 

# Existence of Optimal $\beta$

- is the case, though there is still work to be done.
- concentrated at the boundary.
- of the boundary overtakes this improvement):



**Figure:** Error profiles over the interval [0, 1] for increasing  $\beta$ , with target function  $f(x) = e^x - (1 - x) - ex$ . This function satisfies the boundary conditions only for  $\beta = 1$ . Note how error begins spreading towards the interior when  $\beta = 2$ , yet error continues to decrease in the interior. The interplay between these two phenomena indicates that there is an optimal choice of  $\beta$ , at least for a subregion of the domain.



**Figure:** RMS error for interior and boundary regions. When we consider the interior of the interval separately from the boundaries, we observe that there is an optimal  $\beta$ .

# Conclusions

# Acknowledgments

- Numerical Computation.

#### References

Numerical Algorithms, 45:167–177, 2007.



• The smoothness parameter is only useful if there is an optimal value between 1 and  $\infty$ . Numerical evidence below seems to indicate that this

• When  $\frac{\beta}{2}$  is greater than the target function's highest-order even

derivative that satisfies the boundary conditions, most of the error is

• As  $\beta$  increases, the error at the boundary spreads toward the interior, while the interior enjoys better and better accuracy (until the influence

• The degree to which the target function and its derivatives satisfy the boundary conditions has a significant influence on the convergence behavior of the interpolant as the kernels become smoother. •Accuracy can be gained in a region of the domain by optimizing  $\beta$  for that region. This justifies the introduction of the smoothness parameter.

• Special thanks to our mentor, Greg Fasshauer, and to Mike McCourt. • This work was supported by NSF grant DMS–1115392, Kernel Methods for

Simon Hubbert and Stefan Müller. Thin plate spline interpolation on the unit interval.